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Abstract

Background: Despite the worldwide circulation of human coronavirus OC43 (HCoV-OC43) and HKU1 (HCoV-HKU1),
data on their molecular epidemiology and evolutionary dynamics in the tropical Southeast Asia region is lacking.

Methods: The study aimed to investigate the genetic diversity, temporal distribution, population history and clinical
symptoms of betacoronavirus infections in Kuala Lumpur, Malaysia between 2012 and 2013. A total of 2,060 adults
presented with acute respiratory symptoms were screened for the presence of betacoronaviruses using multiplex
PCR. The spike glycoprotein, nucleocapsid and 1a genes were sequenced for phylogenetic reconstruction and
Bayesian coalescent inference.

Results: A total of 48/2060 (2.4 %) specimens were tested positive for HCoV-OC43 (1.3 %) and HCoV-HKU1 (1.1 %).
Both HCoV-OC43 and HCoV-HKU1 were co-circulating throughout the year, with the lowest detection rates reported in
the October-January period. Phylogenetic analysis of the spike gene showed that the majority of HCoV-OC43 isolates
were grouped into two previously undefined genotypes, provisionally assigned as novel lineage 1 and novel lineage 2.
Sign of natural recombination was observed in these potentially novel lineages. Location mapping showed that the
novel lineage 1 is currently circulating in Malaysia, Thailand, Japan and China, while novel lineage 2 can be found
in Malaysia and China. Molecular dating showed the origin of HCoV-OC43 around late 1950s, before it diverged
into genotypes A (1960s), B (1990s), and other genotypes (2000s). Phylogenetic analysis revealed that 27.3 % of
the HCoV-HKU1 strains belong to genotype A while 72.7 % belongs to genotype B. The tree root of HCoV-HKU1
was similar to that of HCoV-OC43, with the tMRCA of genotypes A and B estimated around the 1990s and 2000s,
respectively. Correlation of HCoV-OC43 and HCoV-HKU1 with the severity of respiratory symptoms was not observed.

Conclusions: The present study reported the molecular complexity and evolutionary dynamics of human
betacoronaviruses among adults with acute respiratory symptoms in a tropical country. Two novel HCoV-OC43
genetic lineages were identified, warranting further investigation on their genotypic and phenotypic characteristics.
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Background
Human coronaviruses are common cold viruses that are
frequently found to be associated with acute upper respira-
tory tract infections (URTIs) [1]. According to the Inter-
national Committee for Taxonomy of Viruses (ICTV),
human coronavirus OC43 (HCoV-OC43) and HKU1
(HCoV-HKU1) belong to the betacoronavirus genus, a
member of the Coronaviridae family. Coronaviruses con-
tain the largest RNA genomes and have been established
as one of the rapidly evolving viruses [2]. In addition to the
high nucleotide substitution rates across the genome [3],
the coronavirus genome is subjected to homologous
recombination during viral replication, which is caused by
RNA template switching mediated by the copy-choice
mechanism [4, 5]. The genetic recombination of coro-
naviruses had possibly led to the emergence of lethal
pathogens such as severe acute respiratory syndrome
coronavirus (SARS-CoV) and Middle East respiratory
syndrome coronavirus (MERS-CoV), which caused up
to 50 % mortality in infected individuals [6–9]. Recom-
bination events in the spike (S), nucleocapsid (N) and
the RNA dependent RNA polymerase (RdRp) within
the 1a gene of HCoV-OC43 and HCoV-HKU1 leading
to the emergence of unique recombinant genotypes
have been reported [10, 11].
Studies have shown that HCoV-OC43 is often associ-

ated with approximately 5 % of acute respiratory infec-
tions while the more recent HCoV-HKU1 is less prevalent
[12, 13]. In humans, acute upper respiratory symptoms
such as nasal congestion and rhinorrhea are relatively
common in HCoV infections while sore throat and
hoarseness of voice are less common, with cough usually
associated with HCoV-OC43 infection [14]. In tropical
countries, annual shift in the predominant genotype has
been documented, with more cases of HCoV-OC43 and
HCoV-HKU1 infections reported during the early months
of the year [15]. Despite the clinical importance and socio-
economic impact of HCoV infections [16, 17], the preva-
lence, seasonality, clinical and phylogenetic characteristics
of HCoVs remain largely unreported in the tropical region
of Southeast Asia. Based on the S, N and 1a genes of
HCoV-OC43 and HCoV-HKU1 isolated from Malaysia
and also globally, we attempted to delineate the genetic
history and the phylodynamic profiles of human betacoro-
naviruses HCoV-OC43 and HCoV-HKU1 using a suite of
Bayesian phylogenetic tools. We also reported the emer-
gence of two novel HCoV-OC43 lineages, in a cross-
sectional study of patients presented with acute URTI in
Malaysia.

Methods
Clinical specimens
A total of 2,060 consenting outpatient adults presented
with symptoms of acute URTI were recruited at the

Primary Care Clinics of University Malaya Medical
Centre in Kuala Lumpur, Malaysia between March 2012
and February 2013. Prior to collection of nasopharyngeal
swabs, demographic data such as age, gender and ethnicity
were obtained. In addition, the severities of symptoms
(sneezing, nasal discharge, nasal congestion, headache,
sore throat, voice hoarseness, muscle ache and cough)
were graded based on previously reported criteria [18–21].
The scoring scheme used had been validated earlier on the
adult populations with common cold [19]. The nasopha-
ryngeal swabs were transferred to the laboratory in univer-
sal transport media and stored in −80 °C.

Molecular detection of HCoV-OC43 and HCoV-HKU1
Total nucleic acids were extracted from nasopharyngeal
swabs using the magnetic beads-based protocols imple-
mented in the NucliSENS easyMAG automated nucleic
acid extraction system (BioMérieux, USA) [22, 23]. Speci-
mens were screened for the presence of respiratory viruses
using the xTAG Respiratory Virus Panel FAST multiplex
RT-PCR assay (Luminex Molecular Diagnostics, USA)
which can detect HCoV-OC43, HCoV-HKU1 and other
respiratory viruses and subtypes [24].

Genetic analysis of HCoV-OC43 and HCoV-HKU1
RNA from nasopharyngeal swabs positive for HCoV-
OC43 and HCoV-HKU1 was reverse transcribed into
cDNA using SuperScript III kit (Invitrogen, USA) with
random hexamers (Applied Biosystems, USA). The par-
tial S gene (S1 domain) [HCoV-OC43; 848 bp (24,030-
24,865) and HCoV-HKU1; 897 bp (23,300-24,196)],
complete N gene [HCoV-OC43; 1,482 bp (28,997-30,
478) and HCoV-HKU1; 1,458 bp (28,241-29,688)] and
partial 1a (nsp3) gene [HCoV-OC43; 1,161 bp (6,168-
7,328) and HCoV-HKU1; 1,115 bp (6,472-7,586)] were
amplified either by single or nested PCR, using 10 μM of
the newly designed or previously described primers
listed in Table 1. The PCR mixture (25 μl) contained
cDNA, PCR buffer (10 mM Tris–HCl, 50 mM KCl,
3 mM MgCl, 0.01 % gelatin), 100 μM (each) deoxynu-
cleoside triphosphates, Hi-Spec Additive and 4u/μl BIO-
X-ACT Short DNA polymerase (BioLine, USA). The
cycling conditions were as follows: initial denaturation at
95 °C for 5 min followed by 40 cycles of 94 °C for 1 min,
54.5 °C for 1 min, 72 °C for 1 min and a final extension
at 72 °C for 10 min, performed in a C1000 Touch auto-
mated thermal cycler (Bio-Rad, USA). Nested/semi-
nested PCR was conducted for each genetic region if
necessary, under the same cycling conditions at 30 cy-
cles. Purified PCR products were sequenced using the
ABI PRISM 3730XL DNA Analyzer (Applied Biosys-
tems, USA). The nucleotide sequences were codon-
aligned with previously described complete and partial
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HCoV-OC43 and HCoV-HKU1 reference sequences re-
trieved from GenBank [11, 25–32].
Maximum clade credibility (MCC) trees for the partial

S (S1 domain), complete N and partial 1a (nsp3) genes
were reconstructed in BEAST (version 1.7) [27, 33, 34].
MCC trees were generated using a relaxed molecular
clock, assuming uncorrelated lognormal distribution
under the general time-reversible nucleotide substitution
model with a proportion of invariant sites (GTR + I) and
a constant coalescent tree model. The Markov chain
Monte Carlo (MCMC) run was set at 3 × 106 steps long
sampled every 10,000 state. The trees were annotated
using Tree Annotator program included in the BEAST
package, after a 10 % burn-in, and visualized in FigureTree
(http://tree.bio.ed.ac.uk/software/Figuretree/). Neighbor
joining (NJ) trees for the partial S (S1 domain), complete
N and partial 1a (nsp3) genes were also reconstructed,
using Kimura 2-parameter model in MEGA 5.1 [35]. The
reliability of the branching order was evaluated by boot-
strap analysis of 1000 replicates. In addition, to explore
the genetic relatedness between HCoV-OC43 and HCoV-
HKU1 genotypes, the pairwise genetic distances among
sequences of the S gene were estimated. Inter- and intra-
genotype nucleotide distances were estimated by the boot-
strap analysis with 1000 replicates using MEGA 5.1. Such
analysis has not been done for the N and the 1a genes
because those regions were highly conserved across
genotypes [10, 11, 32]. To test for the presence of recom-
bination in HCoV-OC43, the S gene was subjected to pair-
wise distance-based bootscanning analysis using SimPlot

version 3.5 [10, 36]. Established reference genomes for
HCoV-OC43 genotype A (ATCC VR-759), B (87309
Belgium 2003), and C (HK04-01) were used as putative
parental lineages, with a sliding window and step size of
160 bp and 20 bp, respectively. In addition, MaxChi
recombination test [37] was performed in the Recombin-
ation Detection Program (RDP) version 4.0 [38]. In RDP
the highest acceptable p value (the probability that
sequences could share high identities in potentially
recombinant regions by chance alone) was set at 0.05,
with the standard multiple comparisons corrected using
the sequential Bonferroni method with 1,000 permuta-
tions [39].

Estimation of divergence time
The origin and divergence time (in calendar year) of
HCoV-OC43 and HCoV-HKU1 genotypes were estimated
using the MCMC approach as implemented in BEAST.
Analyses were performed under the relaxed molecular
clock with GTR + I nucleotide substitution models and
constant-size and exponential demographic models. The
MCMC analysis was computed at 3 × 106 states sampled
every 10,000 steps. The mean divergence time and the
95 % highest posterior density (HPD) regions were esti-
mated, with the best-fitting models were selected by Bayes
factor inference using marginal likelihood analysis imple-
mented in Tracer (version 1.5) [33]. The evolutionary rate
for S gene of betacoronaviruses (6.1 × 10−4 substitutions/
site/year) reported previously was used for analysis [36].

Table 1 PCR primers of HCoV-OC43 and HCoV-HKU1

Target gene HCoV Primer Locationa Sequence (5'-3') Reference

Spike (S) OC43 LPW 1261 24010-24029 Forward: CTRCTATARYTATAGGTAGT [11]

LPW 2094 24866-24887 Reverse: GCCCAAATTACCCAATTGTAGG [11]

HKU1 LPW 1832 23275-23299 Forward: TATGTTAATAAWACTTTGTATAGTG [40]

LPW 1866 24197-24218 Reverse: TACAATTGACAAGAACTAGAAG [40]

Nucleocapsid (N) OC43 & HKU1 βN-F OC43: 28974-28996 Forward: GCTGTTTWTGTTAAGTCYAAAGT this study

HKU1: 28218-28240

βN-R OC43: 30479-30501 Reverse: CATTCTGATAGAGAGTGCYTATY this study

HKU1: 29699-29721

βN-Fn OC43: 29046-29069 Forward (nested): GCMTTGTTRAGARMTWAWATCTAA this study

HKU1: 28287-28310

βN-Rn OC43: 30447-30466 Reverse (nested): GCGAGGGGTTACCACCWRRT this study

HKU1: 29671-29690

1a OC43 OC43-1aF 6145-6167 Forward: CTTTTGGTAAACCTGTTATATGG this study

OC43-1aR 7329-7351 Reverse: AGCTTAATAAAAGAGGCAATAAT this study

OC43-1aFn 6183-6199 Forward (semi-nested): GCTTCYCTCAATTCTTTAACAT this study

HKU1 HKU1-1aF 6448-6471 Forward: TTCTCTTACTTATTTTAATAAACC this study

HKU1-1aR 7587-7610 Reverse: CTTTATACATAGCAGTAACAACTA this study
aNucleotide location was determined based on the HCoV-OC43 ATCC VR-759 (AY585228) and HCoV-HKU1 (NC_06577) reference sequences
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Statistical analysis
The association of HCoV-OC43 and HCoV-HKU1 infec-
tions with specific acute URTI symptoms and its severity
(none, moderate and severe) as well as demographic data
were evaluated using the Fisher’s exact test/Chi-square
test carried out in the statistical package for the social
sciences (SPSS, version 16; IBM Corp).

Results
Detection of HCoV-OC43 and HCoV-HKU1 in nasopharyngeal
swabs
During the 12-month study period (March 2012 to
February 2013), all nasopharyngeal swab specimens
from 2,060 patients collected from Kuala Lumpur,
Malaysia were screened for the presence of HCoV-
OC43 and HCoV-HKU1 using multiplex RT-PCR
method, in which a total of 48 (2.4 %) subjects were
found positive for betacoronavirus. HCoV-OC43 and
HCoV-HKU1 was detected in 26/2060 (1.3 %) and 22/
2060 (1.1 %) patients, respectively, while no HCoV-
OC43/HCoV-HKU1 co-infection was observed. Age,
gender and ethnicity of the patients were summarized
in Table 2. The median age of subjects infected with
HCoV-OC43 and HCoV-HKU1 was 53.0 and 48.5,

respectively. Both HCoV-OC43 and HCoV-HKU1 were
co-circulating throughout the year, although lower
numbers of HCoV-OC43 were detected between Octo-
ber 2012 and January 2013 while no HCoV-HKU1 was
detected during these months (Fig. 1).

Phylogenetic analysis of the S, N and 1a genes
The partial S (S1 domain), complete N and partial 1a
(nsp3) genes of 23 HCoV-OC43 isolates were success-
fully sequenced, while another three xTAG-positive
HCoV-OC43 isolates could not be amplified, probably
due to low viral copy number in these specimens. Based
on the phylogenetic analysis of the S gene, one subject
(1/23, 4.3 %) was grouped with HCoV-OC43 genotype B
reference sequences while another subject (1/23, 4.3 %)
was grouped with HCoV-OC43 genotype D sequences.
The remaining 21 isolates formed two phylogenetically
discrete clades that were distinct from other previously
established genotypes A, B, C, D (genotype D is a re-
combinant lineage that is not readily distinguished from
genotype C in the S and N phylogenetic trees) and E
[11, 32] (Fig. 2 and Additional file 1: Figure S1). Of the
21 isolates, ten isolates have formed a cluster with other
recently reported isolates from Japan, Thailand and
China [31, 32] supported by the posterior probability
value of 1.0 and bootstrap value of 36 % at the internal
tree node of the MCC and NJ trees, respectively with
intra-group pairwise genetic distance of 0.003 ± 0.001.
These isolates were provisionally designated as novel
lineage 1. Spatial structure was observed within novel
lineage 1, with an isolate from China sampled in year 2008
located at the base of the phylogeny. Moreover, another
eleven HCoV-OC43 isolates have formed a second distinct
cluster supported by significant posterior probability and
bootstrap values at the internal tree node (1.0 and 98 %, re-
spectively) and intra-group pairwise genetic distance of
0.004 ± 0.001. The cluster contained Malaysian and Chinese
isolates [32] only, and was denoted as novel lineage 2.
Based on the phylogenetic inference of the conserved N
gene, only one subject was grouped with the genotype B
reference in concordance with the S gene (Additional file 2:
Figure S2). Unlike the phylogenetic inference of the S gene,
the remaining 22 isolates were seen intermingled with each
other forming a single cluster together with isolates indi-
cated as novel lineages 1 and 2 in the S gene, in addition to
one genotype D strain. It is however important to note that
the tree resolution was poor, due primarily to the lack of
the N gene reference sequences in the public database.
On the other hand, phylogenetic analysis of the 1a
(nsp3) gene (Additional file 3: Figure S3) revealed that
all except genotype A could not be differentiated clearly
within this region, due mainly to the low genetic diver-
sity between genotypes. The limited number of 1a ref-
erence sequences available in the public database could

Table 2 Demographic data on 48 outpatients infected with
human betacoronavirus in Kuala-Lumpur, Malaysia, 2012-2013

HCoV-OC43
(n = 26)

HCoV-HKU1
(n = 22)

P-Value

Gender

Male 11(42.3 %) 8(36.4 %) 0.77

Female 15(57.7 %) 14(63.6 %)

Age

<40 9(34.6 %) 10(45.4 %) 0.33

40–60 10(38.5 %) 4(18.2 %)

>60 7(26.9 %) 8(36.4 %)

Symptoms

Sneezing 21(80.8 %) 14(63.6 %) 0.99

Nasal discharge 20(76.9 %) 19(86.4 %)

Nasal congestion 19(73.1 %) 14(63.6 %)

Headache 18(69.2 %) 16(72.7 %)

Sore throat 16(61.5 %) 14(63.6 %)

Hoarseness of voice 20(76.9 %) 18(81.8 %)

Muscle ache 17(65.4 %) 14(63.6 %)

Cough 23(88.5 %) 19(86.4 %)

Ethnicity

Malay 10(38.5 %) 10(45.4 %) 0.19

Chinese 3(11.5 %) 6(27.3 %)

Indian 13(50.0 %) 6(27.3 %)

Others 0(0.0 %) 0(0.0 %)
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have also resulted in a poor 1a tree topology. In
addition, phylogenetic trees of previously described
complete and partial S gene sequences as well as partial
1a (nsp3) and complete RdRp gene sequences were re-
constructed to further confirm the reliability of the par-
tial S1 and nsp3 for identification of HCoV-OC43
genotypes (Additional file 4: Figure S4 and Additional
file 5: Figure S5).
To assess the diversity between HCoV-OC43 genotypes,

inter-genotype pairwise genetic distance was estimated for
the S gene, listed in Table 3. Using the oldest genotype as
reference i.e. genotype A, genetic variation between geno-
type A and genotypes B to E was 2.2–2.7 %. Genetic
distance between novel lineages 1 and 2 compared to geno-
type A was 3.2 % and 3.1 %, respectively, higher than that
of other established genotypes. Taken together, the distinct
inter-genotype genetic variations of the two novel lineages
1 and 2 against other previously established genotypes cor-
roborated with the MCC inference (Fig. 2) in which both
lineages formed distinct phylogenetic topologies.
On the other hand, phylogenetic analysis of 22

HCoV-HKU1 S and N genes indicated the predomin-
ance of HCoV-HKU1 genotype B (72.7 %, 16/22),
followed by HCoV-HKU1 genotype A (27.3 %, 6/22)
(Fig. 3, Additional file 6: Figure S6 and Additional file
7: Figure S7). Interestingly, the S and N genes of HCoV-
HKU1 were equally informative for genotype assignment,
while genotypes A, B and C were less distinctive based on
the 1a gene phylogenetic analysis due to the high genetic
conservation within this region (Additional file 8: Figure
S8). Inter-genotype genetic diversity among HCoV-HKU1
genotypes showed that genotype A was more genetically
diverse than genotypes B and C based on the genetic data
of the S gene (Table 3). The difference in genetic distance

between genotype A and genotypes B and C was 15.2–
15.7 %, while the difference in genetic distance between
genotypes B and C was 1.3 %.
Evidence of possible recombination was observed in the

S gene of novel lineage 1, involving genotypes B and C
(Fig. 4). All isolates within novel lineage 1 showed simi-
lar recombination structures (representative isolates
from Malaysia (12MYKL0208), Japan (Niigata.JPN/11-
764), Thailand (CU-H967_2009) and China (892A/08)
were shown). Similarly, sign of possible recombination
was noticed within novel lineage 2 (Fig. 4). All Malay-
sian and Chinese isolates showed similar recombination
structures in the S gene involving genotypes A and B
(12MYKL0002, 12MYKL0760 and 12689/12 representa-
tive sequences were shown). Moreover, using the afore-
mentioned putative parental and representative strains,
MaxChi analysis of the novel lineages 1 and 2 isolates
supported the hypothesis of recombination in the S
gene (p < 0.05) (Additional file 9: Figure S9). Taken to-
gether, the emergence of novel lineage 1 and novel
lineage 2 in these Asian countries was likely to be
driven by natural recombination events.

Estimation of divergence times
The divergence times of HCoV-OC43 and HCoV-HKU1
were estimated using the coalescent-based Bayesian re-
laxed molecular clock under the constant and exponential
tree models (Fig. 2 and Fig. 3; Table 4). The newly esti-
mated mean evolutionary rate for the S gene of HCoV-
OC43 was 7.2 (5.0 – 9.3) × 10−4 substitutions/site/year.
On the other hand, the evolutionary rate for the S gene of
HCoV-HKU1 was newly estimated at 6.2 (4.2–7.8) × 10−4

substitutions/site/year. These estimates were comparable

Fig. 1 Annual distribution of HCoV-OC43 and HCoV-HKU1 among adults with acute in Malaysia. The monthly detection of HCoV-OC43 and HCoV-HKU1
(right axis, in bars) and the total number of nasopharyngeal swabs screened (left axis, in solid line) between March 2012 and February
2013 were shown
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to previous findings of 6.1–6.7 × 10−4 substitutions/site/
year for the S gene reported elsewhere [11].
Based on these evolutionary estimates of the S gene,

the common ancestor of HCoV-OC43 was dated back to
the 1950s. Divergence time of genotype A was dated
back to early 1960s, followed by genotype B around
1990s. Interestingly, genotypes C, D, E, and novel line-
ages 1 and 2 were all traced back to the 2000s (Fig. 2).
Moreover, the common ancestor of HCoV-HKU1 was
traced back to early 1950s, as estimated from the S gene.
Subsequently, HCoV-HKU1 continued to diverge further
into distinctive genotypes (A-C). Genotype A was dated
to the late 1990 and genotypes B and C were both traced
back to early 2000s (Fig. 3). Bayes factor analysis showed
insignificant differences (Bayes factor <3.0) between the
constant and exponential coalescent models of demo-
graphic analysis. Divergence times generated using the
exponential tree model were slightly (but not signifi-
cantly) different from those estimated using the constant
coalescent model (Table 4). Of note, HCoV-OC43 and
HCoV-HKU1 genotype assignments were less distinctive
within the N and 1a genes (as compared to the S gene);
these regions were therefore deemed unsuitable for
divergence time estimations in this study.

Clinical symptoms assessment
The type of URTI symptoms (sneezing, nasal discharge,
nasal congestion, headache, sore throat, hoarseness of
voice, muscle ache and cough) and their severities during

HCoV-OC43 and HCoV-HKU1 infections were analyzed.
Fisher’s exact test analysis suggested that the severity of
symptoms was not significantly associated with HCoV-
OC43 and HCoV-HKU1 infections (p values > 0.05), this
is due to the fact that the majority (61 % and 55 %) of the
patients infected with HCoV-OC43 and HCoV-HKU1 re-
spectively were presented with at least one respiratory
symptom at moderate level of symptom severity. In
addition, no significant association between HCoV-OC43
and HCoV-HKU1 genotypes with disease severity was
observed.

Discussion
In the present cohort, over 2000 patients with URTI
symptoms were recruited and screened, of whom 1.3 %
(26/2060) and 1.1 % (22/2060) of the subjects were
infected with HCoV-OC43 and HCoV-HKU1, respect-
ively. These estimates corroborate with the previously
reported average incidence of HCoV-OC43 and HCoV-
HKU1 at 0.2–4.3 % and 0.3–4.4 %, respectively [12, 15,
40–45]. Although HCoV-OC43 and HCoV-HKU1 are
not as common as other respiratory viruses, several
studies have reported an elevated incidence of HCoV-
OC43 (up to 67 %) due to sporadic outbreaks with fatal-
ity rate up to 8 % [46, 47]. This 12-month study showed
that HCoV-OC43 and HCoV-HKU1 infections were fre-
quently detected during March 2012 to September 2012
and decreased thereafter, in line with findings reported
from other tropical Southeast Asian country [15]. However,

(See figure on previous page.)
Fig. 2 Maximum clade credibility (MCC) tree of HCoV-OC43 genotypes. Estimation of the time of the most recent common ancestors (tMRCA)
with 95 % highest posterior density (95 % HPD) of HCoV-OC43 genotypes based on the spike gene (S1 domain) (848 bp). Data were analyzed
under relaxed molecular clock with GTR + I substitution model and a constant size coalescent model implemented in BEAST. The Malaysian HCoV-OC43
isolates obtained in this study were color-coded and the HCoV-OC43 genotypes (a) to (e) as well as novel lineages 1 and 2 were indicated. The
MCC posterior probability values were indicated on the nodes of each genotype

Table 3 Genetic distance among HCoV-OC43 and HCoV-HKU1 genotypes in the spike gene

HCoV Genetic distance

OC43 genotype A genotype B genotype C genotype D genotype E Novel lineage 1 Novel lineage 2

genotype A -

genotype B 2.7 -

genotype C 2.2 1.5 -

genotype D 2.7 1.8 0.8 -

genotype E 2.5 0.9 1.2 1.6 -

Novel lineage 1 3.2 2.0 1.3 0.7 1.9 -

Novel lineage 2 3.1 2.9 1.8 1.4 2.6 1.7 -

HKU1 genotype A genotype B genotype C

genotype A -

genotype B 15.7 -

genotype C 15.2 1.3 -

Pairwise genetic distances are expressed in percentage (%) difference
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such patterns differ from that in temperate areas where the
prevalence peaks during winter seasons, but few or no
detections in the summer [43]. It is also important to note
that the study was performed in a relatively short duration,
therefore limiting the epidemiological and disease trend
comparison with reports from other countries.
Phylogenetic inference based on the S gene of HCoV-

OC43 suggested the emergence of two potentially novel
genotypes (designated as novel lineage 1 and novel lineage
2), supported by phylogenetic evidence and shared recom-
bination structures. The relatively low mean intra-cluster

genetic variation reflects the high intra-genotype genetic
homogeneity of each novel lineage. Inter-genotype genetic
distances between HCoV-OC43 genotypes further sup-
ported that the novel lineages 1 and 2 are distinct from
the previously described genotypes [11, 17, 32] in which
the genetic distances between each of these two genotypes
and the others were notably high (up to 3.2 %) (Table 3).
Phylogenetic analysis also revealed that novel lineage 1
includes isolates from Malaysia, Thailand, China and
Japan while novel lineage 2 isolates are all from
Malaysia and China. Spatiotemporal characteristic

HKU1-N3-A (DQ415903)

HKU1-N13-A (DQ415909)

HKU1-N9-A (DQ415906)

HKU1-N14-A (DQ415910)

HKU1-N6-A (DQ415904)
HKU1-N7-A (DQ415905)

HKU1-A (AY597011)

HKU1-BRA-21 (KF430198)
HKU1-BRA-23 (KF430203)

HKU1-N24-A (DQ437619)

HKU1-N23-A (DQ415900)

HKU1- Caen1 (HM034837)

HKU1-N11-A (DQ415908)

HKU1-Reference (NC006577)

HKU1-N19-A (DQ415896)
HKU1-N18-A (DQ415914)

HKU1-USA-15/2009 (KF686344)

HKU1-N10-A (DQ415907)

HKU1-USA-10/2010 (KF686341)

HKU1-USA-16/2010 (KF430200)

HKU1-USA-5/2009 (KF686340)

HKU1-USA-11/2009 (KF686341)

HKU1-USA-14/2009 (KF430199)

HKU1-USA-12/2010 (KF686346)

HKU1-USA-13/2010 (KF686343)

HKU1-USA-7/2010 (KF430202)
HKU1-USA-18/2010 (KF430201)

HKU1-B (AY884001)

HKU1-N15-B (DQ415911)
HKU1-N25-B (DQ415902)

HKU1-N21-C (DQ415898)
HKU1-N5p8-A/B (DQ339101)

HKU1-N22-C (DQ415899)
HKU1-N17-C (DQ415913)

HKU1-N20-C (DQ415897)
HKU1-N16-C (DQ415912)

1951.2 (1906.3-1985.4)

1999.5 (1994.9-2002.5)

2001.1 (1997.6-2003.8)

2002.3 (1999.9-2003.8)

A

B

C

HKU1-USA-1/2005 (KF686338)

1.00

1.00

1.00

1.00

2013200319931943 1953

12MYKL1214 (KR055571)

12MYKL0447 (KR055558)
12MYKL0790 (KR055564)
12MYKL0163 (KR055553)
12MYKL0737 (KR055561)
12MYKL1061 (KR055567)
12MYKL0759 (KR055562)
12MYKL1217 (KR055572)
12MYKL0407 (KR055557)
12MYKL0841 (KR055565)
12MYKL0777 (KR055563)
12MYKL0529 (KR055559)
12MYKL1058 (KR055566)
12MYKL0181 (KR055555)
13MYKL1997 (KR055575)
12MYKL0323 (KR055556)
12MYKL0624 (KR055560)

12MYKL1132 (KR055569)
12MYKL1075 (KR055568)

13MYKL1898 (KR055574)
12MYKL 1781 (KR055573)

12MYKL1153 (KR055570)

HCoV-HKU1
Spike gene (S1 domain)
(897bp)

Fig. 3 Maximum clade credibility (MCC) tree of HCoV-HKU1 genotypes. Estimation of the time of the most recent common ancestors (tMRCA)
with 95 % highest posterior density (95 % HPD) of HCoV-HKU1 genotypes based on the spike gene (S1 domain) (897 bp). Data were analyzed
under relaxed molecular clock with GTR + I substitution model and a constant size coalescent model implemented in BEAST. The Malaysian
HCoV-HKU1isolates obtained in this study were color-coded and the HCoV-HKU1 genotypes (a) to (c) were indicated. The MCC posterior probability
values were indicated on the nodes of each genotype
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observed within the novel lineage 1 phylogeny (Fig. 2)
may suggest the origin of this lineage in China, before it
spread to other regions in the East and Southeast Asia.
In order to clearly define the genetic characteristic of

the putative novel lineages 1 and 2 (and also any
other isolates with discordant phylogenetic patterns),
complete genome sequencing and phylogenetic analysis
need to be carried out.

Fig. 4 Recombination analyses of HCoV-OC43 novel lineages 1 and 2. Reference strains of HCoV-OC43 genotype A (ATCC VR-759), B (87309 Belgium
2003), and C (HK04-01) were used as the putative parental strains. The bootstrap values were plotted for a window of 160 bp moving in increments of
20 bp along the alignment. Samples 12MYKL0208, Niigata.JPN/11-764, CU-H967_2009, 892A/08 were used as representative sequences for novel lineage
1 in addition to 12MYKL0002, 12MYKL0760 and 12689/12 isolates as representatives for novel lineage 2
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Based on the newly estimated substitution rates, the
divergence times for HCoV-OC43 and HCoV-HKU1
were phylogenetically inferred. Interestingly, although
HCoV-OC43 was the first human coronavirus discov-
ered in 1965 [48, 49], and the HCoV-HKU1 was first
described much later in 2005 [50], the S gene analysis
of HCoV-OC43 and HCoV-HKU1 revealed that the
respective common ancestors of both viruses have
emerged since 1950s. Furthermore, the divergence
times of HCoV-OC43 genotypes predicted in this
study are comparable to those described in previous
studies [11, 27]. Phylogenetic, recombination and mo-
lecular clock analysis suggest the emergence of novel
lineages 1 and 2 around the mid-2000s and late 2000s,
respectively, probably by natural recombination events
involving genotypes B and C (for lineage 1) and geno-
types A and B (for lineage 2).
Human coronaviruses are progressively recognized as

respiratory pathogens associated with an increasing
range of clinical outcomes. Our results indicated that
most patients infected with HCoV-OC43 and HCoV-

HKU1 were presented with moderate respiratory symp-
toms (data not shown) in accordance with previously
reported clinical results [16, 51–53] where they were
recognized as common cold viruses associated with
URTI symptoms.

Conclusions
In conclusion, epidemiological and evolutionary dynamics
investigation revealed the genetic complexity of human
betacoronaviruses HCoV-OC43 and HCoV-HKU1 infec-
tions in Malaysia, identifying two potentially novel HCoV-
OC43 lineages among adults with acute respiratory tract
infections. The reported findings warrant continuous
molecular surveillance in the region, and detailed geno-
typic and phenotypic characterization of the novel beta-
coronavirus lineages.
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Table 4 Evolutionary characteristics of HCoV-OC43 and HCoV-
HKU1 genotypes

Subtype-gene evolutionary
ratea

Genotype tMRCAb

OC43-Spike 7.2 (5.2–9.4)

all genotypes 1952.2 (1931.0–1965.2)

genotype A 1961.8 (1955.1–1966.0)

genotype B 1991.0 (1981.4–1999.0)

genotype C/D 2001.7 (2000.1–2002.9)

genotype D 2004.5 (2003.3–2005.8)

genotype E 2009.3 (2008.3–2010.0)

novel lineage 1 2007.5 (2006.6–2008.0)

novel lineage 2 2010.5 (2009.5–2011.4)

HKU1-Spike 6.2 (4.5–8.0)

all genotypes 1957.2 (1920.3–1987.5)

genotype A 1999.4 (1994.8–2002.5)

genotype B 2001.2 (1997.6–2003.6)

genotype C 2002.3 (1999.8–2003.8)

HKU1-Nucleocapsid 4.3 (2.8–5.8)

all genotypes 1962.0 (1915.1–1994.8)

genotype A 1986.8 (1970.8–1999.0)

genotype B 2002.2 (1999.4–2002.2)

genotype C 2002.3 (2000.1–2003.8)
aEstimated mean rates of evolution expressed as 10−4 nucleotide substitutions/
site/year under a relaxed molecular clock with GTR + I substitution model and an
Exponential tree model. The 95 % highest posterior density (HPD) confidence
intervals are included in parentheses
bMean time of the most common ancestor (tMRCA, in calendar year). The
95 % highest posterior density (HPD) confidence intervals are indicated
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method. Bootstrap values were calculated from 1,000 trees. Bootstrap
values of greater than 70 % were indicated on the branch nodes. The
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color-coded. (PDF 347 kb)
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greater than 70% were indicated on the branch nodes. The scale bar of
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