Email updates

Keep up to date with the latest news and content from Virology Journal and BioMed Central.

Open Access Open Badges Research

Colour break in reverse bicolour daffodils is associated with the presence of Narcissus mosaic virus

Donald A Hunter1*, John D Fletcher2, Kevin M Davies1 and Huaibi Zhang1

Author Affiliations

1 The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand

2 The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch, New Zealand

For all author emails, please log on.

Virology Journal 2011, 8:412  doi:10.1186/1743-422X-8-412

Published: 21 August 2011



Daffodils (Narcissus pseudonarcissus) are one of the world's most popular ornamentals. They also provide a scientific model for studying the carotenoid pigments responsible for their yellow and orange flower colours. In reverse bicolour daffodils, the yellow flower trumpet fades to white with age. The flowers of this type of daffodil are particularly prone to colour break whereby, upon opening, the yellow colour of the perianth is observed to be 'broken' into patches of white. This colour break symptom is characteristic of potyviral infections in other ornamentals such as tulips whose colour break is due to alterations in the presence of anthocyanins. However, reverse bicolour flowers displaying colour break show no other virus-like symptoms such as leaf mottling or plant stunting, leading some to argue that the carotenoid-based colour breaking in reverse bicolour flowers may not be caused by virus infection.


Although potyviruses have been reported to cause colour break in other flower species, enzyme-linked-immunoassays with an antibody specific to the potyviral family showed that potyviruses were not responsible for the occurrence of colour break in reverse bicolour daffodils. Colour break in this type of daffodil was clearly associated with the presence of large quantities of rod-shaped viral particles of lengths 502-580 nm in tepals. Sap from flowers displaying colour break caused red necrotic lesions on Gomphrena globosa, suggesting the presence of potexvirus. Red necrotic lesions were not observed in this indicator plant when sap from reverse bicolour flowers not showing colour break was used. The reverse transcriptase polymerase reactions using degenerate primers to carla-, potex- and poty-viruses linked viral RNA with colour break and sequencing of the amplified products indicated that the potexvirus Narcissisus mosaic virus was the predominant virus associated with the occurrence of the colour break.


High viral counts were associated with the reverse bicolour daffodil flowers that were displaying colour break but otherwise showed no other symptoms of infection. Narcissus mosaic virus was the virus that was clearly linked to the carotenoid-based colour break.