Email updates

Keep up to date with the latest news and content from Virology Journal and BioMed Central.

Open Access Research

A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype

Brian L Ellis1, Matthew L Hirsch23, Jenny C Barker1, Jon P Connelly1, Robert J Steininger4 and Matthew H Porteus15*

Author Affiliations

1 Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA

2 Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

3 Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

4 Department of Pharmacology, Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA

5 Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9148, USA

For all author emails, please log on.

Virology Journal 2013, 10:74  doi:10.1186/1743-422X-10-74

Published: 6 March 2013

Abstract

Background

The ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV serotypes that each has a differential ability to infect a variety of cell types. Although transduction studies have been completed, the bulk of the studies have been done in vivo, and there has never been a comprehensive study of transduction ex vivo/in vitro.

Methods

Each cell type was infected with each serotype at a multiplicity of infection of 100,000 viral genomes/cell and transduction was analyzed by flow cytometry + .

Results

We found that AAV1 and AAV6 have the greatest ability to transduce a wide range of cell types, however, for particular cell types, there are specific serotypes that provide optimal transduction.

Conclusions

In this work, we describe the transduction efficiency of ten different AAV serotypes in thirty-four different mammalian cell lines and primary cell types. Although these results may not be universal due to numerous factors such as, culture conditions and/ or cell growth rates and cell heterogeneity, these results provide an important and unique resource for investigators who use AAV as an ex vivo gene delivery vector or who work with cells that are difficult to transfect.

Keywords:
AAV; Serotypes; Adeno-associated virus; Gene therapy; Tropism; Primary cells; Progenitor cells; Cell lines; Transduction; ex vivo