Email updates

Keep up to date with the latest news and content from Virology Journal and BioMed Central.

Open Access Highly Accessed Open Badges Research

The anti-HBV effect mediated by a novel recombinant eukaryotic expression vector for IFN-α

Haotian Yu, Zhaohua Hou, Qiuju Han, Cai Zhang and Jian Zhang*

Author Affiliations

Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China

For all author emails, please log on.

Virology Journal 2013, 10:270  doi:10.1186/1743-422X-10-270

Published: 29 August 2013



Chronic hepatitis B is a primary cause of liver-related death. Interferon alpha (IFN-α) is able to inhibit the replication of hepadnavirus, and the sustained and stable expression of IFN-α at appropriate level may be beneficial to HBV clearance. With the development of molecular cloning technology, gene therapy plays a more and more important role in clinical practice. In light of the findings, an attempt to investigate the anti-HBV effects mediated by a eukaryotic expression plasmid (pSecTagB-IFN-α) in vitro was carried out.


HBV positive cell line HepG2.2.15 and its parental cell HepG2 were transfected with pSecTagB-IFN-α or empty plasmid by using Lipofectamine™ 2000 reagent. The expression levels of IFN-α were determined by reverse transcriptase polymerase chain reaction (RT-PCR) and ELISA methods. The effects of pSecTagB-IFN-α on HBV mRNA, DNA and antigens were analyzed by real-time fluorescence quantitative PCR (qRT-PCR) and ELISA assays. RT-PCR, qRT-PCR and western blot were employed to investigate the influence of pSecTagB-IFN-α on IFN-α-induced signal pathway. Furthermore, through qRT-PCR and ELISA assays, the suppressive effects of endogenously expressed IFN-α and the combination with lamivudine on HBV were also examined.


pSecTagB-IFN-α could express efficiently in hepatoma cells, and then inhibited HBV replication, characterized by the decrease of HBV S gene (HBs) and HBV C gene (HBc) mRNA, the reduction of HBV DNA load, and the low contents of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). Mechanism research showed that the activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal pathway, the up-regulation of IFN-α-induced antiviral effectors and double-stranded (ds) RNA sensing receptors by delivering pSecTagB-IFN-α, could be responsible for these phenomena. Furthermore, pSecTagB-IFN-α vector revealed effectively anti-HBV effect than exogenously added IFN-α. Moreover, lamivudine combined with endogenously expressed IFN-α exhibited stronger anti-HBV effect than with exogenous IFN-α.


Our results showed that endogenously expressed IFN-α can effectively and persistently inhibit HBV replication in HBV infected cells. These observations opened a promising way to design new antiviral genetic engineering drugs based on IFN-α.

HBV; IFN-α; Eukaryotic expression vector